Виды микроскопов: описание, основные характеристики, назначение. Чем электронный микроскоп отличается от светового? Электронный микроскоп в гараже Современный электронный микроскоп его возможности

Московский институт электронной техники

Лаборатория электронной микроскопии С.В. Седов

[email protected]

Принцип работы современного растрового электронного микроскопа и его использование для исследования объектов микроэлектроники

Цель работы: знакомство с методиками исследования материалов и микроэлектронных структур при помощи растрового электронного микроскопа.

Продолжительность работы: 4 ч.

Приборы и принадлежности: растровый электронный микроскоп Philips-

SEM-515, образцы микроэлектронных структур.

Устройство и принцип работы растрового электронного микроскопа

1. Введение

Растровая электронная микроскопия - это исследование объекта путем облучения тонко сфокусированным электронным пучком, который развертывается в растр по поверхности образца. В результате взаимодействия сфокусированного электронного пучка с поверхностью образца возникают вторичные электроны, отраженные электроны, характеристическое рентгеновское излучение, ожэ-электроны и фотоны различных энергий. Они рождаются в определенных объемах - областях генерации внутри образца и могут быть использованы для измерения многих его характеристик, таких как топография поверхности, химический состав, электрофизические свойства и т д.

Основной причиной широкого использования растровых электронных микроскоов является высокое разрешение при исследовании массивных объектов, достигающее 1,0 нм (10 Å). Другой важной чертой изображений, получаемых в растровом электронном микроскопе является их объемность, обусловленная большой глубиной резкости прибора. Удобство применения растрового микроскопа в микро-и нанотехнологии объясняется относительной простотой подготовки образца и оперативностью исследования, что позволяет использовать его для межоперационного контроля технологических параметров без значительных потерь времени. Изображение в растровом микроскопе формируется в виде телевизионного сигнала, что существенно упрощает его ввод в компьютер и дальнейшую программную обработку результатов исследований.

Развитие микротехнологий и появление нанотехнологий, где размеры элементов существенно меньше длины волны видимого света, делает растровую электронную микроскопию практически единственной неразрушающей методикой визуального контроля при производстве изделий твердотельной электроники и микромеханики.

2. Взаимодействие электронного луча с образцом

При взаимодействии пучка электронов с твердой мишенью возникает большое число различного рода сигналов. Источником этих сигналов являются области излучения, размеры которых зависят от энергии пучка и атомного номера бомбардируемой мишени. Размерами этой области, при использовании определенного сорта сигнала, определяется разрешение микроскопа. На рис. 1 показаны области возбуждения в образце для разных сигналов.

Полное распределение по энергии электронов, излучаемых образцом

приведено на рис.2. Оно получено при энергии падающего пучка Е 0= 180эВ, по оси ординат отложено число эмиттированых мишенью электронов J s (E), а по оси абсцисс - энергия Е этих электронов. Заметим, что вид зависимости,

приведенной на рис.2, сохраняется и для пучков с энергией 5 – 50 кэВ, используемых в растровых электронных микроскопах.

Г
руппуI составляют упруго отраженные электроны с энергией, близкой к энергии первичного пучка. Они возникают при упругом рассеянии под большими углами. С увеличением атомного номера Z растет упругое рассеяние и увеличивается доля отраженных электронов . Распределение отраженных электронов по энергиям для некоторых элементов приведено на рис.3.

Угол рассеяния 135 0
, W=E/E 0 - нормированная энергия, d/dW - число отраженных электронов на падающий электрон и на единицу энергетического интервала. Из рисунка видно, что при увеличении атомного номера не только растет число отраженных электронов, но и их энергия становится ближе к энергии первичного пучка. Это приводит к возникновению контраста по атомному номеру и позволяет исследовать фазовый состав объекта.

Группа II включает в себя электроны, подвергшиеся многократному неупругому рассеянию и излученные к поверхности после прохождения более или менее толстого слоя материала мишени, потеряв при этом определенную часть своей первоначальной энергии.

Э
лектроны группыIII являются вторичными электронами с малой энергией (менее 50 эВ), которые образуются при возбуждении первичным пучком слабосвязаных электронов внешних оболочек атомов мишени. Основное влияние на количество вторичных электронов оказывает топография поверхности образца и локальные электрические и магнитные поля. Количество выходящих вторичных электронов зависит от угла падения первичного пучка (рис.4). Пусть R 0 – максимальная глубина выхода вторичных электронов. Если образец наклонен, то длина пути в пределах расстояния R 0 от поверхности возрастает: R = R 0 sec 

Следовательно возрастает и количество соударений, при которых рождаются вторичные электроны. Поэтому незначительное изменение угла падения приводит к заметному изменению яркости выходного сигнала. Благодаря тому, что генерация вторичных электронов происходит в основном в приповерхностной области образца (рис.1), разрешение изображения во вторичных электронах близко к размерам первичного электронного пучка.

Характеристическое рентгеновское излучение возникает в результате взаимодействия падающих электронов с электронами внутренних K, L, или М оболочек атомов образца. Спектр характеристического излучения несет информацию о химическом составе объекта. На этом основаны многочисленные методы микроанализа состава. Большинство современных растровых электронных микроскопов оснащено энергодисперсионными спектрометрами для качественного и количественного микроанализа, а так же для создания карт поверхности образца в характеристическом рентгеновском излучении определенных элементов.

3 Устройство растрового электронного микроскопа .

прибор для наблюдения и фотографирования многократно (до 10 6 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки , ускоренных до больших энергий (30-100 кэв и более) в условиях глубокого вакуума. Физические основы корпускулярно-лучевых оптических приборов были заложены в 1834 (почти за сто лет до появления Электронный микроскоп) У. Р. , установившим аналогии между световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Целесообразность создания Электронный микроскоп стала очевидной после выдвижения в 1924 о , а технические предпосылки были созданы немецким физиком X. Бушем, который исследовал фокусирующие осесимметричных полей и разработал магнитную электронную линзу (1926). В 1928 немецкие учёные М. Кнолль и Э. Руска приступили к созданию первого магнитного просвечивающего Электронный микроскоп (ПЭМ) и спустя три года получили изображение объекта, сформированное пучками . В последующие годы (М. фон Арденне, 1938; В. К. , 1942) были построены первые растровые Электронный микроскоп (РЭМ), работающие по принципу сканирования (развёртывания), т. е. последовательного от точки к точке перемещения тонкого электронного пучка (зонда) по объекту. К середине 1960-х гг. РЭМ достигли высокого технического совершенства, и с этого времени началось их применение в научных исследованиях. ПЭМ обладают самой высокой (PC), превосходя по этому параметру световые микроскопы в несколько тыс. раз. Т. н. предел разрешения, характеризующий прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2-3 . При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы. При фотографировании периодических структур, таких как атомные решёток кристаллов, удаётся реализовать разрешение менее 1 . Столь высокие разрешения достигаются благодаря чрезвычайно малой длине (см. ). Оптимальным диафрагмированием [см. в электронной (и ионной) оптике] удаётся снизить (влияющую на PC Электронный микроскоп) при достаточно малой дифракционной ошибке. Эффективных методов коррекции в Электронный микроскоп (см. ) не найдено. Поэтому в ПЭМ магнитные (ЭЛ), обладающие меньшими , полностью вытеснили электростатические ЭЛ. Выпускаются ПЭМ различного назначения. Их молено разделить на 3 группы: Электронный микроскоп высокого разрешения, упрощённые ПЭМ и Электронный микроскоп с повышенным ускоряющим .

ПЭМ с высокой разрешающей способностью (2-3 Å ) - как , приборы многоцелевого назначения. С помощью дополнительных устройств и приставок в них можно наклонять объект в разных на большие углы к оптической оси, нагревать, охлаждать, деформировать его, осуществлять , исследования методами и пр. Ускоряющее электроны достигает 100-125 кв, регулируется ступенеобразно и отличается высокой стабильностью: за 1-3 мин оно изменяется не более чем на 1-2 миллионные доли от исходного . Изображение типичного ПЭМ описываемого типа приведено на рис. 1 . В его оптической системе (колонне) с помощью специальной вакуумной системы создаётся вакуум ( до 10 -6 мм рт. ст.). Схема оптической системы ПЭМ изображена на рис. 2 . Пучок , которых служит накалённый катод, (формируется в и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное «пятно» малых размеров (при регулировке пятна может меняться от 1 до 20 мкм). После сквозь объект часть рассеивается и задерживается диафрагмой. Нерассеянные электроны проходят через отверстие диафрагмы и фокусируются в предметной промежуточной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя проекционная линза формирует изображение на флуоресцирующем экране, который светится под воздействием электронов. Увеличение Электронный микроскоп равно увеличений всех линз. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, т. к. толщина, и химический состав объекта меняются от точки к точке. Соответственно изменяется число электронов, задержанных апертурной диафрагмой после прохождения различных точек объекта, а следовательно, и плотность тока на изображении, которая преобразуется в на экране. Под экраном располагается магазин с фотопластинками. При фотографировании экран убирается, и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется плавным изменением тока, возбуждающего объектива. Токи др. линз регулируют для изменения увеличения Электронный микроскоп

Рис. 3. Сверхвысоковольтный электронный микроскоп (СВЭМ): 1 - бак, в который накачивается электроизоляционный газ (элегаз) до давления 3-5 атм; 2 - электронная пушка; 3 - ускорительная трубка; 4 - конденсаторы высоковольтного источника; 5 - блок конденсорных линз; 6 - объектив; 7, 8, 9- проекционные линзы; 10 - световой микроскоп; 11 - пульт управления.

Растровые Электронный микроскоп (РЭМ) с накаливаемым катодом предназначены для исследования массивных объектов с разрешением от 70 до 200 Å . Ускоряющее в РЭМ можно регулировать в пределах от 1 до 30-50 кв.

Устройство растрового Электронный микроскоп показано на рис. 4 . При помощи 2 или 3 ЭЛ на образца фокусируется узкий электронный зонд. Магнитные отклоняющие развёртывают зонд по заданной площади на объекте. При взаимодействии зонда с объектом возникает несколько видов (рис. 5 ) - вторичные и отражённые электроны; электроны, прошедшие сквозь объект (если он тонкий); рентгеновское и характеристическое ; излучение и т. д.

Рис. 5. Схема регистрации информации об объекте, получаемой в РЭМ. 1 - первичный пучок электронов; 2 - детектор вторичных электронов; 3 - детектор рентгеновского излучения; 4 - детектор отражённых электронов; 5 - детектор светового излучения; 6 - детектор прошедших электронов; 7 - прибор для измерения наведённого на объекте электрического потенциала; 8 - прибор для измерения тока прошедших через объект электронов; 9 - прибор для измерения тока поглощенных в объекте электронов.

Любое из этих излучений может регистрироваться соответствующим коллектором, содержащим датчик, преобразующий в электрические , которые после усиления подаются на (ЭЛТ) и модулируют её пучок. Развёртка пучка ЭЛТ производится с развёрткой электронного зонда в РЭМ, и на экране ЭЛТ наблюдается увеличенное изображение объекта. Увеличение равно отношению высоты кадра на экране ЭЛТ к ширине сканируемой объекта. Фотографируют изображение непосредственно с экрана ЭЛТ. Основным достоинством РЭМ является высокая информативность прибора, обусловленная возможностью наблюдать изображение, используя различных датчиков. С помощью РЭМ можно исследовать , химического состава по объекту, р-n-переходы, производить и многое другое. Образец обычно исследуется без предварительной подготовки. РЭМ находит применение и в технологических процессах ( дефектов микросхем и пр.). Высокая для РЭМ PC реализуется при формировании изображения с использованием вторичных . Она определяется диаметром зоны, из которой эти электроны эмиттируются. Размер зоны в свою очередь зависит от диаметра зонда, свойств объекта, электронов первичного пучка и т. д. При большой глубине проникновения первичных электронов вторичные процессы, развивающиеся во всех направлениях, увеличивают диаметр зоны и PC падает. Детектор вторичных электронов состоит из (ФЭУ) и электронно-фотонного преобразователя, основным элементом которого является с двумя - вытягивающим в виде сетки, находящейся под положительным потенциалом (до нескольких сотен в), и ускоряющим; последний сообщает захваченным вторичным электронам энергию, необходимую для . К ускоряющему электроду приложено около 10 кв; обычно он представляет собой алюминиевое покрытие на сцинтиллятора. Число вспышек сцинтиллятора пропорционально числу вторичных , выбитых в данной точке объекта. После усиления в ФЭУ и в сигнал модулирует пучок ЭЛТ. Величина сигнала зависит от образца, наличия локальных электрических и магнитных микрополей, величины , который в свою очередь зависит от химического состава образца в данной точке. Отражённые электроны регистрируются полупроводниковым (кремниевым) . Контраст изображения обусловлен зависимостью от угла падения первичного пучка и атомного номера . Разрешение изображения, получаемого «в отражённых электронах», ниже, чем получаемого с помощью вторичных (иногда на порядок ). Из-за прямолинейности полёта электронов к коллектору информация об отдельных участках, от которых нет прямого пути к коллектору, теряется (возникают тени). Характеристическое выделяется или рентгеновским кристаллическим или энергодисперсным датчиком - полупроводниковым детектором (обычно из чистого кремния, легированного литием). В первом случае рентгеновские кванты после отражения кристаллом спектрометра регистрируются газовым , а во втором - сигнал, снимаемый с полупроводникового , усиливается малошумящим (который для снижения шума охлаждается жидким азотом) и последующей системой усиления. Сигнал от кристаллического модулирует пучок ЭЛТ, и на экране возникает картина того или иного химического элемента по объекта. На РЭМ производят также локальный рентгеновский . Энергодисперсный детектор регистрирует все элементы от Na до U при высокой чувствительности. Кристаллический спектрометр с помощью набора кристаллов с различными межплоскостными (см. ) перекрывает от Be до U. Существенный недостаток РЭМ - большая длительность процесса «снятия» информации при исследовании объектов. Сравнительно высокую PC можно получить, используя электронный зонд достаточно малого диаметра. Но при этом уменьшается зонда, вследствие чего резко возрастает влияние , снижающего отношение полезного сигнала к шуму. Чтобы отношение «сигнал/шум» не падало ниже заданного уровня, необходимо замедлить сканирования для накопления в каждой точке объекта достаточно большого числа первичных (и соответствующего вторичных). В результате PC реализуется лишь при малых скоростях развёртки. Иногда один кадр формируется в течение 10-15 мин.

Рис. 6. Принципиальная схема просвечивающего растрового электронного микроскопа (ПРЭМ): 1 - автоэмиссионный катод; 2 -промежуточный анод; 3 - анод; 4 - отклоняющая система для юстировки пучка; 5 - диафрагма «осветителя»; 6, 8 - отклоняющие системы для развертки электронного зонда; 7 - магнитная длиннофокусная линза; 9 - апертурная диафрагма; 10 - магнитный объектив; 11 - объект; 12, 14 - отклоняющие системы; 13 - кольцевой коллектор рассеянных электронов; 15 - коллектор нерассеянных электронов (убирается при работе со спектрометром); 16 - магнитный спектрометр, в котором электронные пучки поворачиваются магнитным полем на 90° ; 17 - отклоняющая система для отбора электронов с различными потерями энергии; 18 - щель спектрометра; 19 - коллектор; ВЭ - поток вторичных электронов hn - рентгеновское излучение.

РЭМ с автоэмиссионной пушкой обладают высокой для РЭМ PC (до 30 Å ). В автоэмиссионной пушке (как и в ) используется катод в форме острия, у вершины которого возникает сильное , вырывающее электроны из катода (см. ). Электронная яркость пушки с автоэмиссионным катодом в 10 3 -10 4 раз выше, чем пушки с накалённым катодом. Соответственно увеличивается ток электронного зонда. Поэтому в РЭМ с автоэмиссионной пушкой осуществляют быстрые развёртки, а зонда уменьшают для повышения PC. Однако автоэмиссионный катод работает устойчиво лишь при сверхвысоком вакууме (10 -9 -10 -11 мм рт. ст.), и это усложняет конструкцию таких РЭМ и работу на них.

Просвечивающие растровые Электронный микроскоп (ПРЭМ) обладают столь же высокой PC, как и ПЭМ. В этих приборах применяются автоэмиссионные пушки, обеспечивающие достаточно в зонде диаметром до 2-3 Å . На рис. 6 приведено схематическое изображение ПРЭМ. Две уменьшают диаметр зонда. Ниже объекта расположены - центральный и кольцевой. На первый попадают нерассеянные электроны, и после и усиления соответствующих сигналов на экране ЭЛТ появляется т. н. светлопольное изображение. На кольцевом детекторе собираются рассеянные электроны, создающие т. н. темнопольное изображение. В ПРЭМ можно исследовать более толстые объекты, чем в ПЭМ, т. к. возрастание числа неупруго рассеянных с толщиной не влияет на разрешение (после объекта оптика в ПРЭМ отсутствует). С помощью энергии электроны, прошедшие сквозь объект, разделяются на упруго и неупруго рассеянные пучки. Каждый пучок попадает на свой детектор, и на ЭЛТ наблюдается соответствующее изображение, содержащее дополнительную информацию о рассеивающих объекта. Высокое разрешение в ПРЭМ достигается при медленных развёртках, т. к. в зонде диаметром всего 2-3 Å ток получается слишком малым.

Электронный микроскоп смешанного типа. Сочетание в одном приборепринципов формирования изображения с неподвижным пучком (как в ПЭМ) и сканирования тонкого зонда по объекту позволило реализовать в таком Электронный микроскоп преимущества ПЭМ, РЭМ и ПРЭМ. В настоящее время во всех ПЭМ предусмотрена возможность наблюдения объектов в растровом режиме (с помощью конденсорных линз и , создающих уменьшенное изображение , которое сканируется по объекту отклоняющими системами). Кроме изображения, сформированного неподвижным пучком, получают растровые изображения на экранах ЭЛТ с использованием прошедших и вторичных электронов, характеристические и т. д. Оптическая система такого ПЭМ, расположенная после объекта, даёт возможность работать в режимах, неосуществимых в других приборах. Например, можно одновременно наблюдать на экране ЭЛТ и изображение того же объекта на экране прибора.

Эмиссионные Э. м. создают изображение объекта в электронах, которые эмиттирует сам объект при нагревании, первичным пучком , и при наложении сильного электрического поля, вырывающего электроны из объекта. Эти приборы обычно имеют узкое целевое назначение.

Зеркальные Электронный микроскоп служат главным образом для визуализации электростатического «потенциального рельефа» и магнитных микрополей на объекта. Основным оптическим элементом прибора является , причём одним из служит сам объект, который находится под небольшим отрицательным потенциалом относительно катода пушки. Электронный пучок направляется в зеркало и отражается полем в непосредственной близости от объекта. Зеркало формирует на экране изображение «в отражённых пучках». Микрополя возле поверхности объекта перераспределяют электроны отражённых пучков, создавая на изображении, визуализирующий эти микрополя.

Перспективы развития Электронный микроскоп Повышение PC в изображениях непериодических объектов до 1 Å и более позволит регистрировать не только тяжёлые, но и лёгкие атомы и визуализировать на атомарном уровне. Для создания Электронный микроскоп с подобным разрешением повышают ускоряющее . Сер. физическая», т. 34, 1970; Хокс П., и , пер. с англ., М., 1974; Деркач В. П., Кияшко Г. Ф., Кухарчук М. С., Электронозондовые устройства, К., 1974; Стоянова И. Г., Анаскин И. Ф., Физические основы методов просвечивающей электронной микроскопии, М., 1972; Oatley С. W., The scanning electron microscope, Camb., 1972; Grivet P., Electron optics, 2 ed., Oxf., 1972.

Оглавление темы "Электронная микроскопия. Мембрана.":









Электронные микроскопы появились в 1930-х годах и вошли в повсеместное употребление в 1950-х.

На рисунке изображен современный трансмиссионный (просвечивающий) электронный микроскоп , а на рисунке показан путь электронного пучка в этом микроскопе. В трансмиссионном электронном микроскопе электроны, прежде чем сформируется изображение, проходят сквозь образец. Такой электронный микроскоп был сконструирован первым.

Электронный микроскоп перевернут «вверх дном» по сравнению со световым микроскопом. Излучение подается на образец сверху, а изображение формируется внизу. Принцип действия электронного микроскопа в сущности тот же, что и светового микроскопа. Электронный пучок направляется конденсорными линзами на образец, а полученное изображение затем увеличивается с помощью других линз.

В таблице суммированы некоторые сходства и различия между световым и электронным микроскопами . В верхней части колонны электронного микроскопа находится источник электронов - вольфрамовая нить накала, сходная с той, какая имеется в обычной электрической лампочке. На нее подается высокое напряжение (например, 50 000 В), и нить накала излучает поток электронов. Электромагниты фокусируют электронный пучок.

Внутри колонны создается глубокий вакуум. Это необходимо для того, чтобы сократить до минимума рассеивание электронов из-за столкновения их с частицами воздуха. Для изучения в электронном микроскопе можно использовать только очень тонкие срезы или частицы, так как более крупными объектами электронный пучок почти полностью поглощается. Части объекта, отличающиеся относительно более высокой плотностью, поглощают электроны и потому на сформировавшемся изображении кажутся более темными. Для окрашивания образца с целью увеличения контраста используют тяжелые металлы, такие как свинец и уран.

Электроны невидимы для человеческого глаза, поэтому они направляются на флуоресцирующий , который воспроизводит видимое (черно-белое) изображение. Чтобы получить фотоснимок, экран убирают и направляют электроны непосредственно на фотопленку. Полученный в электронном микроскопе фотоснимок называется электронной микрофотографией.

Преимущество электронного микроскопа :
1) высокое разрешение (0,5 нм на практике)


Недостатки электронного микроскопа :
1) подготовленный к исследованию материал должен быть мертвым, так как в процессе наблюдения он находится в вакууме;
2) трудно быть уверенным, что объект воспроизводит живую клетку во всех ее деталях, поскольку фиксация и окрашивание исследуемого материала могут изменить или повредить ее структуру;
3) дорого стоит и сам электронный микроскоп и его обслуживание;
4) подготовка материала для работы с микроскопом отнимает много времени и требует высокой квалификации персонала;
5) исследуемые образцы под действием пучка электронов постепенно разрушаются. Поэтому, если требуется детальное изучение образца, необходимо его фотографировать.

Электронный микроскоп называется так не потому, что в нем применены какие-либо компоненты, содержащие электронику – хотя и ее там более чем достаточно. Но главное – вместо потока световых лучей, которые несут информацию об объекте и которые мы можем просто увидеть, приблизив наши глаза к окулярам, в электронном микроскопе используется поток электронов – точно такой же, как и в обычном телевизоре. Изображение, подобное телевизионному, мы сможем наблюдать на экране, покрытом специальным составом, светящимся при попадании на него потока электронов. Но каким же образом увеличивает электронный микроскоп?

Дело в том, что точно так же, как стекло обычной линзы изменяет ход световых лучей, магнитное и электрическое поля изменяют движение потока электронов, что делает возможным фокусировку электронных «лучей» с теми же самыми эффектами, что и в привычной «стеклянной» световой оптической системе. Однако в виду предельно малых размеров электронов и значительного «преломления» электронных потоков увеличение изображения достигается примерно в тысячу раз большее, чем у оптического микроскопа. Вместо привычных нам окуляров в электронном микроскопе изображение либо проецируется на очень маленький люминесцентный экран, с которого наблюдатель рассматривает его в привычный оптический микроскоп с небольшим увеличением, либо с помощью оптико-электронного преобразователя выводится на обычный телевизионный экран, либо – что чаще всего и применяется на практике – фиксируется на фотопластинке. Для электронного микроскопа не существует такого параметра, как точность цветопередачи, ведь цвет – это свойства световых лучей, а не электронов. В микромире нет цвета, потому «цветные» снимки, полученные с помощью электронного микроскопа – не более чем условность.

Вот примерно таков был принцип работы первого в истории электронного микроскопа, по существующей классификации он относился к микроскопам ОПЭМ – «обычный электронный микроскоп просвечивающего типа», внешне он напоминал скорее большой металлообрабатывающий станок, нежели микроскоп, каким люди привыкли видеть его за полтора предшествующих столетия. В этом приборе, обеспечивающем увеличение до миллиона раз, образец «просвечивался» движущимся в неизменном направлении потоком электронов. Чуть позднее появились растровые электронные микроскопы, в которых сфокусированный до субатомных размеров электронный пучок «сканирует» поверхность образца, а изображение наблюдается на экране монитора. Собственно, «увеличение» сканирующего микроскопа – тоже условность, это отношение размера экрана к размеру исходного сканируемого объекта. Именно на таком приборе человеку удалось впервые увидеть отдельные атомы. Пока это предел технологических возможностей. Да и на самом деле - мир элементарных частиц настолько отличается от нашего, что мы вряд ли сможем его постигнуть до конца, даже воочию увидев.

Что такое USB-микроскоп?

USB-микроскоп – это вид цифрового микроскопа. Вместо привычного окуляра здесь установлена цифровая камера, которая захватывает изображение с объектива и переносит его на экран монитора или ноутбука. К компьютеру такой микроскоп подключается очень просто – через обычный USB-кабель. В комплекте с микроскопом всегда идет специальное программное обеспечение, которое позволяет обрабатывать получаемые изображения. Вы сможете делать фотографии, создавать видеоролики, менять контрастность, яркость и размеры картинки. Возможности программного обеспечения зависят от производителя.

USB-микроскоп – это прежде всего компактный увеличительный прибор. Его удобно брать с собой в поездки, на встречи или за город. Обычно USB-микроскоп не может похвастаться большим увеличением, но для изучения монет, мелкого шрифта, предметов искусства, образцов тканей или денежных купюр его возможностей вполне хватает. С помощью такого микроскопа можно исследовать растения, насекомых и любые окружающие вас мелкие предметы.

Где купить электронный микроскоп?

Если вы окончательно определились с выбором модели, электронный микроскоп купить можно на этой страничке. В нашем интернет-магазине вы найдете электронный микроскоп по лучшей цене!

Если вы хотите воочию увидеть электронный микроскоп, а потом принять решение – посетите, ближайший к вам, магазин «Четыре глаза».
Да-да, и возьмите с собой детей! Без покупок и подарков точно не останетесь!



Поделиться